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Nomenclature 

A 

A* 

A+ 

A- 

A?! 

a 

a(y) 

a13. 
x 

ak 

B 

BX 

b 

bYj 

btj 

cv 

c* 
V 

C P 

C* 
P 

C 
V 

C 
P 

D 

DT 

E 

F 

h(y) 

= Helmholtz free energy. 

= A/PcV. 

= power law amplitude for specific heat above Tc (see Table I). 

= power law amplitude for specific heat below Tc (see Table I). 

= parameter in eq. (3.13) for crossover function F. 

= linear model equation of state parameter (see eq. (2.14~)). 

= scaling function for A* (see Table II). 

= coefficients in eq. (3.33) for no of steam. 

= coefficients in eqs. (3.18) and (3.23) for X0 of carbon 
dioxide and steam. 

= power law amplitude for coexisting densities (see Table I). 

= parameter in eq. (3.13) for crossover function F. 

= linear model equation of state constant (see eq. (2.14a)). 

= coefficients in eq. (3.32) for t of steam. 

= coefficients in eq. (3.22) for x of steam. 

= heat capacity at constant volume. 

= heat capacity at constant pressure. 

= CpTc/PcV. 

= specific heat at constant volume. 

= specific heat at constant pressure. 

= power law amplitude for chemical potential at T=Tc (see Table I). 

* h/ocp=thermal diffusivity. 

= constant in MLSG equation of state (see eq. (2.10)). 

= crossover function in thermal conductivity equation 
defined by eq. (3.13). 

= scaling function for u* (see Table II). 
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5 = p-l(aplaP), = compressibility. 

L3 

= linear model equation of state parameter (see eq. (2.14b)). 

= Boltzmann's constant. 

n = exponent in eq. (3.13) for crossover function F. 

P = pressure. 

pC 
= critical pressure. 

P* = PIP 
C’ 

P;(T*) = analytic background in the equation for the pressure in the 
critical region (see Table II). 

p* = 
i coefficients in eq. (2.17) for Pg(T*). 

p(e) = auxiliary function in linear model equation of state 
(see Table III). 

'i = coefficients in equation for p(9) (see Table III). 

q = parameter in eq. (3.27) f or critical viscosity enhancement. 

R = universal constant in eq. (2.21) for co. 

r 

S 

s* 

s(e) 

s’(0) 
S i 

T 

T 
C 

= parametric variable in linear model equation of state 
(see eq. (2.14)). 

= entropy. 

= STc/PcV. 

= auxiliary function in linear model equation of state 
(see Table III). 

= ds(B)/dS. 

= coefficients in equation for s(8) (see Table III). 

= temperature. 
= critical temperature. 

T* = T/Tc. 

= (T-T~)/T~. 

Tr 

T 

= reference temperature (see eqs. (3.20) and (3.25). 

= T/T,. 
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V 

X 

X 
0 

Y 

Y 
6 

x 

x 
0 

x e 

i 

AX 

5 

= volume. 

= AT*I IAp* I1lB. 
= -x at coexistence curve. 

= (X+X0)/X0. 

= power law exponent for specific heat (see Table I). 

= power law exponent for coexisting densities (see Table I). 

= power law amplitude for compressibility above Tc (see Table I). 

= power law amplitude for compressibility below Tc (see Table I). 

= power law exponent for compressibility (see Table I). 

= power law exponent for chemical potential at T=Tc (see Table I). 

= shear viscosity. 

= limn. 
P-+0 

= excess viscosity. 

= normal viscosity. 
= critical viscosity enhancement. 

= parametric variable in linear model equation of state (see eq. (2.14)). 
= correlation length. 

= power law amplitude for correlation length above Tc (see Table I). 

= power law amplitude for correlation length below Tc (see Table I). 

= SolrVIY. 

= constant in eq. (3.11) for critical thermal conductivity 
enhancement. 

= thermal conductivity. 

= 1imx. 
P-f0 

= excess thermal conductivity. 

B normal thermal conductivity. 
= critical thermal conductivity enhancement. 
= coefficients in eq. (3.17) for x i of carbon dioxide. 
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u 
i-I* 

l-q 

V 

P 

PC 

P” 

AP* 

= chemical potential. 

= lJP,/Pc. 

= {LI(P,T) - !J(P,.TI~P~/P~. 

= value of p* at critical point. 

= analytic background in the equation for the chemical potential 
in the critical region (see Table II). 

= coefficients in eq. (2.19) for p*(T*). 
0 

= power law exponent for correlation length (see Table I). 

= density. 
= critical density. 

= P/P* 
C 

= (P-P,) /PC. 

= reference temperature (see eqs. (3.20) and (3.25)). 

= P/P r' 
= exponent in eq. (3.27) for critical viscosity enhancement. 

= p2KT. 

= +Pc@. 

= r/ (qso~y'v. 
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1. Introduction 

Many thermophysical properties exhibit a singular behavior in the 
vicinity of the critical point. For instance, the isothermal compress- 
ibility, the thermal expansion coefficient and the specific heat of 
fluids all diverge at the critical point. Critical enhancement effects 
are also encountered in the behavior of the thermal conductivity and 
the viscosity near the critical point. It has always been difficult to 
formulate correlating equations that incorporate accurately the singular 
behavior of the various thermophysical properties near the critical 
point. However, in recent years considerable progress has been made in 
the art of developing representative equations for the thermodynamic and 
transport properties of fluids in the critical region. The purpose of 
this technical report is to discuss these developments with an emphasis 
on practical applications. 

The critical point is a point of marginal thermodynamic stability. 
In the vicinity of the critical point, large-scale density fluctuations 
are present in the fluid. The spatial extent of these fluctuations can 
be characterized by a correlation length 5. Near the critical point, 
this correlation length becomes much larger than the intermolecular 
interaction range. One can imagine that the critical enhancement effects 
are caused by the static and dynamic behavior of a system of clusters. 
Different states in the vicinity of the critical point correspond to 
different cluster sizes and the thermodynamic states can be interrelated 
by scaling laws. Moreover the properties of a system of clusters become 
independent of the nature of the individual molecules. This principle 
is commonly referred to as critical-point universality (Levelt Sengers 
et al., 1977). 

Recent developments have revealed that the simple scaling laws for 
the critical behavior of the thermodynamic properties become rigorously 
valid only in an asymptotically small region around the critical point, a 
region too small to be of interest in engineering applications. In order 
to formulate representations of the thermophysical properties that can 
be used in a larger range around the critical point one has two options. 
The first option, the more fundamental one, is to develop a theory for the 
higher order corrections to the asymptotic scaling laws. This approach 
is currently being developed (Levelt Sengers and Sengers, 1980). The 
other approach is to modify the asymptotic scaling laws using some semi- 
empirical adaptions. It is the latter approach which will be followed in 
this technical report. Hence, the emphasis is not on a test of the 
validity of the modern theory of critical phenomena, but rather on a 
presentation of some simplified procedures that enable one to characterize 
the behavior of the thermophysical properties of fluids in the critical 
region with reasonable accuracy. 

A comprehensive account of methods for describing equilibrium properties 
of fluids was presented in a previous NASA contractor report (Sengers and 
Levelt Sengers, 1977). The primary purpose of the present report is to ex- 
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tend the methods to a description of the transport properties of fluids 
in the critical region. However, the behavior of the transport properties 
near the critical point is closely related to the critical behavior of the 
thermodynamic properties and the correlation length. For this reason, it 
was deemed desirable to include in this report a brief review of the 
behavior of the equilibrium properties in the critical region as well. 

There exists a close analogy between the behavior of the thermodynamic 
and transport properties of fluids near the gas-liquid critical point and 
those of binary liquids near the critical mixing point (Sengers and Levelt 
Sengers, 1977; Scott, 1978; Greer, 1978). This technical report deals only 
with the behavior of the properties of one-component fluids near the gas- 
liquid critical point. 

The part of this report concerned with the equation of state is based 
on research done in collaboration with the late T. A. Murphy. Representative 
equations for the thermophysical properties of carbon dioxide were formulated 
in collaboration with F. J. Cook and equations for the transport properties 
of steam in collaboration with J. T. R. Watson. 

Computer time for this project was provided by the Computer Science 
Center at the University of Maryland. 
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2. Equilibrium properties 

2.1 Power laws 

Let A be the Helmholtz free energy, S the entropy, 1-1 the chemical 
potential per unit mass, C, the heat capacity at constant volume and Cp 
the heat capacity at constant pressure. We also find it convenient to 
introduce a symmetrized isothermal compressibility defined as 

ap 
( > 

2 
XT3 T&-,=P% * (2.1) 

The thermodynamic properties are made dimensionless by expressing them 
in terms of the critical temperature T,, the critical density pc and the 
critical pressure PC. 

T* = T/T 
C , P*= PIP C 

, p*= P/PC , A*=A/P$J , p*=uoc/P c ' 

x; = x,P,/ P2 c ' S*= STc/PcV , Cc= CVTc/PcU , C;= CpTc/PcV .(2.2) 

Note that the reduced extensive properties A*, S* and C* are all taken per 
unit volume, rather than per unit mass. The reason is ?hat the singular 
part of the extensive thermodynamic properties per unit volume appear to 
be approximately symmetric or antisymmetric functions of p-pc (Vicentini- 
Missoni et al., 1969a; Levelt Sengers, 1974). As a consequence, XT is also 
a symmetric function of p-PC, 
not (Sengers, 1973). 

while the compressibility XT= p-'(ap/ap), is 
We also define the reduced differences 

AT* = (T-T~)/T 
C 

, 

AP* = (P-Q /pc , (2.3) 

Au* = [I.I(P,T) - u(P,,T)IP~/P . C 

To represent the singular thermodynamic behavior of fluids in the vicinity 
of the critical point, one first defines critical power laws. The ex- 
ponents of these power laws depend on the property considered and the path 
along which the critical point is approached. The special paths in the 
AT*- Ap* plane commonly considered are the coexistence curve or phase 
boundary (CXC), the critical isochore (CIC) Ap*= 0 and the critical isotherm 
(CIT) AT*= 0. These paths are indicated schematically in Fig. 1. The 
critical power laws defined along these paths are summarized in Table I. 
The critical exponents of the different thermodynamic properties are not 
independent. The scaling laws to be discussed below imply the exponent 
relations 

a = 2 - @(s-+1) , y = B(&-1) . (2.4) 
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Critical Doint I 

2-phase region 
I 
I 

I 
I 
I \ 

Fig. 1 Special paths in the AT* versus Ap* plane for the definition 
of critical power laws. 
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Table I Critical power laws 

Property 

P/T* 

C;/T* 

AP* 

x$ 

Path Power law 

CIC , AT* 2 0 G ~AT*/-~ 

CIC , AT* 5 0 $~AT*)-~ 

cxc kBIAT*IB 

CIC , AT* 2 0 I'lAT*(-Y 

G cxc r’ 

AU* CIT +D 

I’ AT* 

5 CIC , AT* 1 0 5, 1 AT* 

5 cxc 

It is generally believed that the critical exponents of fluids should 
be the same as those of spin systems represented by a Landau-Ginzburg 
Hamiltonian (Hubbard and Schofield, 1972; Nicoll, 1980). These critical 
exponent values have been calculated with considerable accuracy (Baker et al., 
1978; Le Guillou and Zinn-Justin, 1977, 1980). Experiments indicate 
agreement with these theoretical exponent values provided that the temperature 
of the gas-liquid critical point is approached to within a few 
hundredths of a percent (Levelt Sengers et al., 1977). Efforts to 
develop a systematic theoretical description of the thermodynamic behavior 
over a larger range of temperatures and densities are currently in pro- 
gress (Ley-Koo and Green, 1977; De Pasquale et al., 1978; Nicoll and 
Chang, 1978; Levelt Sengers and Sengers, 1980). Here we continue to employ 
a more practical approach, adopted in the previous technical report, by 



using the critical power laws over a larger range with effective exponent 
values deduced from the experimental data (Levelt Sengers and Sengers, 
1975; Levelt Sengers et al., 1976; Sengers and Levelt Sengers, 1977; 
Aharony and Ahlers, 1980). 

2.2 Scaling laws 

The critical power laws characterize the behavior of the thermo- 
dynamic properties along selected paths in the AT*-Ap* plane. We 
can generalize the description to the behavior of the thermodynamic 
properties at arbitrary temperatures and densities in the critical 
region by formulating scaling laws. For this purpose one defines a 
scaling variable x as 

x = AT*/\AP*I~" , 

This scaling variable is chosen such that the coexistence boundary 
corresponds to a constant value of the scaling variable x: 

x =-x x =B -l/B 
0 ' . cxc 0 

Instead of x, it is slightly more convenient to use the variable 

x+x 
y--2 . 

X (2.7) 
0 

Curves of constant y in the AT *- Ap* plane are indicated schematically 
in Fig. 2. The coexistence curve corresponds to y= 0, the critical 
isotherm to y= 1 and the critical isochore to y=". 



AT* 

AP* 

Fig. 2 Curves of constant y in the AT* versus Ap* plane. 

Sufficiently close to the critical point, the singular behavior 
of the thermodynamic properties, when reduced appropriately, becomes 
a function of the scaling variable y. To specify the thermodynamic 
properties in the critical region completely, the scaled contributions 
are supplemented with contributions that are analytic functions of the 
physical variables. The expressions thus obtained for a number of 
thermodynamic properties are listed in Table II (Sengers and Levelt 
Sengers, 1977). 



Table II Scaled expressions for thermodynamic functions+ 

Chemical potential 

?J* = u;(T*> + Ap*lAp*j6-lDh(y) 

Compressibility 

*-I = 
XT 

1&-l D[ah(y) ++(l-y) y ] 

Pressure 

p* = P,*(T*) + D 
C 
Ap*IAp*j6-1h(y) + lap*/ 6+1{h(r) - a(y 

Pressure coefficient 

"PO* (T*) 

dT* 
+ e!s. Ap" I&-,*/ (y-l)/fi d~~).IAp*I(l-cc)/B(d~Sy) @$I}] 

x0 c 
P* 

Helmholtz free energy density 

A* = -PE(T*) + p*pE(T*) + [Ap*16+lDa(y) 

Entropy density 

dv,* CT*) 
dT* - '* ,-JT" - 

Heat capacity 

C; d*P; d2$(T*) 
- = 

T* -(T*) - p* 
dT*2 dTn2 

- 

Cl-a> /B 
bp* 1 da(y) D 

X 
0 

dy 

-al B lWl d2a(y) D 
xz dy2 

-t- P*(T*> and p*(T*) are analytic functions of T* . 
0 0 



Here the singular behavior of the thermodynamic properties is expressed 
in terms of two scaling functions h(y) and a(y) which are related by the 
differential equation (Griffiths, 1967; Levelt Sengers et al., 1976): 

gh(y) = g(s+l)a(y) + (l-y)? . 

The function h(y) is normalized such that h(l)=l. 

As an example, we consider the scaling law for the chemical potential 

Au* = Ao*IAo*16-1Dh(y) . 

Normally, the chemical potential is a function of two variables, density 
and temperature. However, the scaling law (2.9) implies that when "scaled" 
chemical potential data Au*/~Ao*lAo*16-1 are plotted as a function of the 
"scaled" temperature y, the data should collapse onto a single curve. As 
an example, we show in Fig. 3 such a plot for steam. This plot is based 
on the experimental data of Rivkin and coworkers (1962, 1963, 1966) as 
analyzed by Levelt Sengers et al. (1976). 

2.3 Equations of state for the critical region 

2.3.1 MLSG equation of state 

The equation of state is commonly defined as a functional 
relationship between the pressure P, the volume V and the temperature T. 
However, in the critical region the density p is a more suitable variable 
than the volume V (Vicentini-Missoni et al., 1969a). Since u is the 
thermodynamic function conjugate to the density p, the equation of state 
considered here is the functional relationship between the chemical 
potential u, the density p and the temperature T. Thus to specify the 
scaled equation of state, we need to specify the function h(y) in (2.9). 
One equation, proposed for this purpose, is the so-called NBS- or MLSG- 
equation (Vicentini-Missoni et al., 1969a,b; Levelt Sengers et al., 1976; 
Sengers and Levelt Sengers, 1977) 

h(y) = Y (2.10) 



0 
0 

AX 

x 

#z HP 

P 
A 

0 647.57 K 
+ V650.12 K V + 653.13 K 

0 A 663.13 K 
0 x 673.15 K 

0683.11 K 
0693.11 K 

Id I I I I I I 
Id2 Id I IO IO2 IO3 IO’ IO5 IO6 

)(+x0 

x0 

Fig. 3 Scaled chemical potential data for steam as a function of 
Y' (x+x0)/x0. Reduction parameters are taken from Table IV. 

where E is a constant. As a consequence, the symmetrized isothermal 
compressibility x; is represented by 

x$ = I&*[ 1 . (2.11) 

Note that at the critical isochore Ap*= 0 and eq. (2.11) reduces to 

< = TIAT*[-~ (2.12) 

In terms of the MUG equation of state, the amplitudes B, I? and JY' of the 
critical power laws, defined in Table I for the coexistence curve and the 
compressibility, are related to D and x0 by 
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B=x -6 
0 

XY 1 + p-1) /28 

r=*T- 
( ) 

, 

BX Y 
r’ = +,+,)(Y-W28 

(2.13b) 

(2.13~) 

2.3.2 Linear model equation of state 

The MLSG equation has the advantage that it enables one to 
calculate the compressibility x+ directly for given values of AT* and 
Lip*. However, it has the disadvantage that the expression (2.10) for 
h(y) cannot be integrated analytically to yield an explicit expression 
for a(y) and, hence, for the pressure. This problem is solved by 
introducing two auxiliary ("parametric") variables r and 0 instead of 
the variables AT* and A@. 

Here we consider the linear model, originally introduced by 
Schofield (1969). It is defined by 

AT* = r(l-b2S2) , (2.14a) 

Ap*=krge , (2.14b) 

Au* = ar@e(l- S*) , (2.14~) 

where a. k and b2 are constants. This model is chosen such that 8= +1 
correspond to the two branches of the coexistence curve, 8= *l/b to the 
critical isotherm and i3= 0 to the critical isochore. The resulting 
parametric expressions for a number of thermodynamic properties are given 
in Table III. The amplitudes of the critical power laws defined in Table I 
are related to the linear model constants by (Hohenberg and Barmatz, 1972; 
Sengers and Levelt Sengers, 1977) 

B = k/(b2-l)@ , 

n = a(b2-l)b"-3/k" , 

r = k/a , 

r' = (b2-l)Y-1{l-b2(l-28))kl '2a , 

(2.15a) 

(2.15b) 

(2.15c) 

(2. 15d) 
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A+ = ak(2-cx)(l-a)a p, (2.15e) 

A- = ak(2-a)(l-a)a(pO+ p2+ p4)/b2-1)2Ta . (2.15f) 

Table III Linear model equations for thermodynamic properties 

Variables 

AT* = r(l-b2e2) 

Ap* = rBke 

Chemical potential 

LJ * = y*(T*) + rB6a0(1-02) 
0 

I Compressibility 

x; 
= .-y k . l-(l-28)b2e2 

a l-38* + b2e2 
i 
3e2- 1 + 2Bs(l-e*) 

> 

Pressure 

P* = P;(T*) + r Bsae(l-e2) + r8(6+1)akp(e) 

I Pressure coefficient 

dP;(T*) 1-a 
dT* +r 

aks(el + p*rB6-1aBe w-e2w-3e2) 

P* 1-(1-2B)b2e2 

Helmholtz free energy density 

A* = - P;(T*) + o*n*(T*) + r2-uak{e2(l-e2) - p(B)} 
0 

Entropy density 

s* = 
dP;(T*) 1-1* CT*) 

dT* - o 
*O+r 1-a 

dT* aks(8) 
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Table III (continued) 

Heat capacities 

C,* d2P;(T*) ""$ CT*> 
-= 
T* dT*2 

- P* 
+ pak u-~>s(el-i3es'(el 

dT*2 l-(l-2f3)b2e2 

2 

Auxiliary functions 

PC@) = PO + p2e2+ P404 

with 

PO = + 
8(&3)-b*q 

2b4(2-u)(l-@a 

P2 = - 
8(6-3)-b2a(2B6-1) 

2b*(l-a)cL 

, 

with 

de) = so + s2e2 , s’(e) = 2s2e 

= (2-a)p 3 s2=- 
i3(6-3) 

S 
0 0 2b'a 

2$6-3 
p4 = + 2a 

13 



A computer program calculating the parametric variables r and 8 for given 
temperatures and densities is presented in the Appendix. A similar program 
has been published by Moldover (1978). 

The linear model constant b2 is sometimes identified with (Schofield 
et al., 1969) 

b2 = (s-l~-(31-20) - (2.16) 

The linear model with condition (2.16) is referred to as the restricted 
linear model. Further details can be found in the previous technical report 
(Sengers and Levelt Sengers, 1977). 

2.4 Universality 

The principle of universality asserts that the critical exponents and the 
scaling function h(y) should be the same for all 3-dimensional systems with 
short range forces. The only system dependent constants in the scaling laws 
are the coefficients D and x0 which specify the amplitude of the critical 
isotherm and the coexistence curve, respectively (Levelt Sengers, 1977a). In 
terms of the MLSG equation of state and the linear model equation of state, 
this principle requires the constants E and b2 to be universal. 

Since we are applying the scaling laws outside their asymptotic range using 
effective critical exponent values and effective values for E and b2, the 
principle of universality will only apply approximately. In order to illustrate 
to what extent this empirical extension of the universality principle is 
adequate, we reproduce in Fig. 4 scaled chemical potential data for 3He, 4He, 
Xe, CO2 andH20) (Levelt Sengers, 1974; Levelt Sengers et al., 1976; Sengers and 
Levelt Sengers, 1977). The data can be represented approximately by a single 
function of the scaling variable y= (x+x0)/x0. The data cover a range in 
temperatures and densities bounded by 

5 x 10 -4s1AT*1 53 x lo-* , \Ao+O.25 . (2.17) 

The principle of corresponding states would imply identical behavior when 
the thermodynamic properties are reduced using the critical parameters T,, pc 
P The fluids included in Fig. 
Hzwever, 

4 do not satisfy corresponding states. 
the universality hypothesis is a generalization of corresponding 

states, saying that identical behavior of the singular critical behavior of 
the thermodynamic properties is obtained by use of two additional constants, 
D and x0, or in terms of the linear model, a and k. In Table IV, taken from 
the previous technical report (Sengers and Levelt Sengers, 1977), we have 
listed these parameters for a number of fluids. In this table we have added 
parametric values for isobutane, taken from an NBS Internal Report (Waxman 
et al., 1978). 
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4 T IO- 
-- 
*4 
p 103- 

B 
*‘ 102- 
2 

IO - 

I - 

16’ I I I I I I~.II 
18 10-I I 10 102 I03 104 IO5 106 

xcx, 
X0 

Fig. 4 Scaled chemical potential data for 3He, 4He, Xe, CO2 and Hz0 as 
a function of y= (x+x0)/x0. Reduction parameters are taken from 
Table IV (Sengers and Levelt Sengers, 1977). 
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Table IV. Critical region parameters for a number of fluids with 
effective universal exponent values (Sengers and Levelt 
Sengers, 1977). 

pc PC Tc X D k a ~oxlo10 
MPa kg/m3 K 0 

m 

3 
He 0.11678 41.45 3.3099 0.489 3.16 0.924 4.58 2.7 

4 
He 0.22742 69.6 5.1895 0.369 2.86 1.021 6.40 2.2 

Ar 4.865 535. 150.725 0.183 2.43 1.309 16.1 1.6 

Kr 5.4931 908. 209.286 0.183 2.43 1.309 16.1 1.7 

Xe 5.8400 1110. 289.734 0.183 2.43 1.309 16.1 1.9 

p-H2 1.285 31.39 32.935 0.260 2.50 1.156 9.6 1.9 

N 2 3.398 313.9 126.20 0.164 2.32 1.361 18.2 1.6 

O2 5.043 436.2 154.580 0.183 2.36 1.309 15.6 1.6 

H2° 22.06 322.2 647.13 0.100 1.28 1.622 21.6 1.3 

D2° 21.66 357. 643.89 0.100 1.28 1.622 21.6 1.3 

co2 7.3753 467.8 304.127 0.141 2.16 1.436 21.3 1.6 

NH3 11.303 235. 405.4 0.109 1.47 1.573 21.4 1.4 

SF6 3.7605 730. 318.687 0.172 3.06 1.337 23.9 2.0 

CH4 4.595 162.7 190.555 0.164 2.17 1.361 17.0 1.7 

C2H4 5.0390 215. 282.344 0.168 2.32 1.350 17.5 1.9 

C2H6 4.8718 206.5 305.33 0.147 2.17 1.416 20.2 1.8 

C3H8 4.247 221. 369.82 0.137 1.96 1.451 20.2 2.0 

iso-C H 4 10 3.631 227. 497.85 0.140 2.07 i.441 20.8 2.2 

Notes: a= 0.100, s= 0.355, y= 1.190, 6=4.352, v= 0.633, E= 0.287, b2=1.3909 
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2.5 A fundamental equation for the critical region 

The scaled equations introduced in the previous section enable us to 
calculate the singular critical behavior of the thermodynamic properties. 
However, in order to obtain the complete thermodynamic behavior, we need to 
specify the analytic background functions P,*(T*) and @(T*> (see Tables II 
and III). This is accomplished by expanding Pz(T*) and @(T*) in a Taylor 
series in terms of AT* (Levelt Sengers, 1977b). 

P;(T*) = 1 + C P+(AT*)i , 
i=i ' 

u;(T*) = u; + C P;(AT*)~ . 
i=l 

(2.18) 

(2.19) 

i3ased on linear model parameters earlier determined by Murphy et al., 
(1973, 1975), these background parameters have been determined for steam and 
carbon dioxide. For steam this task was done by Levelt Sengers (1977b) and 
the fundamental equation parameters are reproduced in Table V. For carbon 
dioxide this task was accomplished by Cook and Sengers as part of this project. 
The parameters for CO2, deduced from the experimental data of Michels et al. 
(1937, 1948, 1952), including a correction for the temperature scale (Levelt 
Sengers and Chen, 1972; Levelt Sengers et al., 1976), are also given in Table 
V.-f 

2.6 Correlation length 

We shall try to relate the critical enhancement of the transport 
properties to the thermodynamic properties and the correlation length E, 
which measures the size of the critical fluctuations. For this purpose we 
calculate the correlation length using an approximate relationship with the 
compressibility introduced in the previous technical report (Sengers and 
Levelt Sengers, 1977) 

5 = Eo(X;/rPy , (2.20) 

where the correlation function exponent v is related to the thermodynamic 
critical exponents by the hyperscaling relation 

t In this report all temperatures are quoted in terms of the International 
Practical Scale of 1968, referred to as IPTS '68 (Douglas, i969). 
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Table V Fundamental equation parameters based on 

the linear model with effective exponent values 

steam t carbon dioxide t-t 

Critical parameters 

Critical exponents 

Linear model parameters 

Coefficients Fz 

Coefficients 1-1: 

Correlation length 
amplitude 

Range 

PC 
= 324.383 kg/m3 

PC = 22.0477 MPa 

Tc = 647.073 K(IPTS'68) 

CY. = 0.08712 

B = 0.3505 

y = 1.2119 

6 = 4.4576 

v = 0.6367 

a = 24.0999 

k = 1.6837 

b2= 1.4099 

P; = 7.87425 

P; = -25.8448 

P; = 3.96522 

1-1; = -34.05 

u; = -16.59 

11; = 59.84 

Eo= 1.31X10-10m 

/AT*/ i 0.05,lAp*lZO.25 

PC 
= 467.8 kg/m3 

PC = 7.37516 MPa 

TC 
= 304.127 K (IP~5'68) 

a = 0.128 

f3 = 0.3486 

y = 1.175 

6 = 4.37 

v = 0.624 

a = 24.4878 

k = 1.745 

b2= 1.70 

P; = 6.9992 

P; = -8.8535 

- 

'-'$ = 13.0231 

!J; = -49.2265 

"; = 423.428 

co = 1.5x10-lam 

iA*] sO.O3,1Ap*I 50.28 

From Levelt Sengers (1977b). 

'From Cook and Sengers (unpublished report, 1974). 
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v = B(s+1)/3 . (2.21) 

The amplitude 5, for the correlation length can be related to the critical power 
law amplitudes B and I', defined in Table I, by 

co = R(I'kBTc/B2F'c)1'3 (2.22) 

where R is a universal constant whose value is approximately equal to 0.7 
(Sengers and Levelt Sengers, 1977; Sengers and Moldover, 1978). Values 
for the correlation length amplitude co are included in Tables IV and V. 

The above equations allow us to calculate the correlation length 5 from 
the symmetrized reduced compressibility $ by the use of either the MLSG 
equation (2.11) or the linear model equation for x$ given in Table III. 

3. Transport properties 

3.1 Introductory remarks -- 

The thermal conductivity X and the shear or dynamic viscosity n exhibit a 
critical enhancement in the vicinity of the critical point. For a survey of 
the history of the subject the reader is referred to some earlier reviews 
(Sengers, 1966, 1971, 1972, 1973). 

In Fig. 5 we show schematically the thermal conductivity X as a function 
of the density p at three temperatures Tl< T2 CT3 above the critical temperature 
T In order to describe the critical enhancement, we separate h into a normal 
o:'background thermal conductivity 1 and a critical thermal conductivity 
enhancement AA (Sengers and Keyes, 1971). 

Outside the critical region, the-thermal conductivity X is to be-identified 
with the normal thermal conductivity X. Inside the critical region, x is defined 
empirically by extrapolating the behavior of the normal thermal conductivity 
outside the critical region. The normal thermal conductivity X may in turn be 
written as 

x(p,T) = A,(T) + X,(P,T) , (3.2) 

where X,(T) is the thermal conductivity in the limit of low densities at the same 
temperature and where X,(p,T) is commonly referred to in the engineering 
literature as the excess thermal conductivity. The excess thermal conductivity 
is a slowly varying function of temperature and increases monotonically with 
density (Diller et al., 1970; Hanley et al., 1972; Sengers, 1968). 
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I A, !T, 1 
t I 

Density p 

Fig. 5 Schematic representation of the thermal conductivity X(p,T) as a 
function of the density p at three supercritical temperatures 
Tl<T2<T3. 

The behavior of the viscosity TJ as a function of density at a temperature 
slightly above the critical temperature is shown schematically in Fig. 6. In 
analogy to (3.1) and (3.2) we separate the viscosity n into a normal viscosity 
c and a critical viscosity enhancement Au 

T-I=;+& , (3.3) 

with 

%P,T) = rio(T) + rl,(~,T) . (3.4) 

However, there are some qualitative differences between the critical enhancements 
of the thermal conductivity and of the viscosity. First, the thermal con- 
ductivity enhancement is a "strong" enhancement extending over a large range of 
temperatures and densities, while that of the viscosity is a "weak" enhancement 
limited to a small range of temperatures, typically a few degrees, around the 
critical temperature (Sengers, 1973). Secondly, theoretical and experimental 
evidence indicates that the critical viscosity enhancement is a multiplicative 
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PC 
Density p 

Fig. 6 Schematic representation of the viscosity q(p,T) as a function of 
the density p at a temperature slightly above the critical temperature. 

enhancement, i.e. A17 is itself proportional to the normal viscosity (Kawasaki, 
1971, 1976; Per1 and Ferrell, 1972; Sengers 1971, 1973; Ohta, 1977; Calmettes 
1977). Thus, in the casg of the viscosity, we prefer to consider the relative 
critical enhancement An/q or the viscosity ratio q/t. 

Another transport property of interest is the thermal diffusivity 
DT= X/pep, where cp is the specific heat at constant pressure per unit mass. It 
can be determined experimentally from measurements of the decay rate of the 
critical fluctuations with the use of light scattering techniques (Mountain, 
1966; Benedek, 1968; McIntyre and Sengers, 1968; Cummins and Swinney, 1970; 
Fleury and Boon, 1973). This method has the advantage that the thermal diffusivity 
is measured while the fluid remains in thermodynamic equilibrium but it is in 
practice limited to a small range around the critical point, where the scattered 
light intensity is sufficiently large for the method to be applicable. It is 
also possible to determine the thermal diffusivity from the temperature field 
in the fluid near a heated boundary, made visible by holographic interferometry 
(Becker and Grigull, 1975, 1978; Schmitt and Beer, 1977). Although the thermal 
conductivity diverges at the critical point, the specific heat at constant 
pressure c 

3. 
increases much faster, so that the thermal diffusivity goes to zero 

at the cri ical point. 
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As mentioned in the previous technical report (Sengers and Levelt Sengers, 
1977), the modern theory of critical phenomena is based on a renormalization- 
group approach. For a more comprehensive introduction to the subject the 
reader is referred to the literature (Barber, 1977; Domb and Green, 1976; 
Pfeuty and Toulouse, 1977; Wallace and Zia, 1978; Wilson and Kogut, 1974). 
Subsequently, the method has been extended to dynamic critical phenomena as 
well (Siggia et al., 1976; Kawasaki and Gunton, 1976; Gunton and Kawasaki, 
1976; Hohenberg and Halperin, 1977; Ernst, 1978; De Dominici and Peliti, 1978; 
Mazenko, 1978). Another approach to the theory of dynamic critical phenomena 
is commonly referred to as mode-coupling theory. In this approach the time 
correlation function expressions for the transport coefficients are evaluated 
by use of the methods of generalized hydrodynamics and the critical anomalies 
arise from non-linear coupling between hydrodynamic modes (Kadanoff and Swift, 
1968; Kawasaki, 1970, 1971, 1976; Pomeau and R&ibois, 1975). For a discussion 
of the relationship between the mode-coupling theory and the dynamic renormal- 
ization-group theory the reader is referred to a recent survey presented by 
Gunton (1979). These theories yield expressions for the transport coefficients 
near the critical point as a function of the wavelength of the fluctuations. In 
this technical report we only consider the hydrodynamic transport coefficients 
corresponding to the long wavelength limit. 

The dynamic renormalization-group theory predicts that the thermal con- 
ductivity and the viscosity near the critical point should diverge as (Siggia 
et al., 1976; Hohenberg and Halperin, 1977) 

kBT AX = A zx pep , (3.5) 

An = ?-I cc 5' 3 (3.6) 

where kg is Boltzmann's constant and where A is a universal constant and 4 a 
universal exponent independent of the nature of the fluid. 

The mode-coupling theory leads to sets of coupled integral equations which 
are difficult to evaluate. In first approximation one finds (Kawasaki, 1970, 
1971, 1976; Ferrell, 1970; Per1 and Ferrell, 1972) 

AX= i$ pep 
kBT 

= m P(Cp - CJ , (3.7) 

An 8 T 
n 

= - Rn(qS) 
151T2 

, (3.8) 
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I where q is a slowly varying function of temperature (Oxtoby and Gelbart, 1974), 
/ but which will be treated here as an adjustable constant. Equation (3.7) may 

be interpreted physically by assuming that the critical part AX/pep of the 
thermal diffusivity DT is determined by the Stokes-Einstein diffusion of clusters 
with radius 5. 

Since An/t<<l, equation (3.8) may be written in the form of a power law 
(3.6) 

with @=8/151~~=0.054 (Ohta, 1975; Ohta and Kawasaki, 1976). The exponent @ has 
also been calculated from a perturbation expansion up to second order in 
E=4-d, where d is the dimensionality of the system, yielding Q~O.065 (Siggia 
et al., 1976; Gunton, 1979). Expanding A up to first order in E, Siggia et al. 
estimated A- 1.2. On comparing (3.7) with (3.5) we note that the mode-coupling 
theory implies in first approximation the value A= 1.0. Recent experimental 
studies very close to the critical point have indicated that the value of A is 
indeed close to unity (Burstyn et al., 1980; Gittinger and Cannell, 1980). 

As mentioned in Section 2, the asymptotic scaling laws for the equilibrium 
properties become valid rigorously at temperatures within a few hundredths of a 
percent from the critical temperature. Due to the additional approximations in 
the derivation of the asymptotic power laws for the transport properties, the 
range of validity of equations introduced above will be even smaller. Just as 
in the case of the thermodynamic properties, we adopt here a practical approach 
in which the thermal conductivity and the viscosity in the critical region are 
presented by (3.5) and (3.9), but allowing for effective values of the amplitude 
A and the exponent $ which may differ slightly from the values predicted 
theoretically. 

3.2 Thermal conductivity 

3.2.1 Thermal conductivity equation 

The asymptotic equation (3.5) for the critical thermal conductivity 
enhancement will only be applicable in a relatively small region of temperatures 
and densities around the critical point. However, the actual observed critical 
thermal conductivity enhancement covers a large range of temperatures and 
densities. For instance, in the case of carbon dioxide a critical enhancement 
is noted in a temperature range of 70°C above the critical temperature 
(Le Neindre et al., 1973). In practice, one needs a representative equation 
covering the entire range of the critical enhancement. For this purpose we 
adopt an equation of the form (Hanley et al., 1974b, 1976). 

X=x+AX , (3.10) 

with 
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kBT 
*' = A 6~~6 - P(c p -cv)F(AT*,Ao*) . (3.11) 

Here F(AT*,Ap*) is an empirical crossover function such that 

lim F(AT*,Ap*) = 1 , lim F(A**,Ao*) = 0 . (3.12) 
I*T*I+o,I*P*I+o l~~*l+m,I~p*j+m 

In practice, we continue to use a crossover function earlier introduced by 
Hanley et al. (1974b, 1976): 

F(AT*,Ao*) = p*" exp[-{Ah(AT*)2+BX(Ap*)4}] . (3.13) 

The crossover function insures that equation (3.11) for AX reduces to the 
theoretically predicted equation (3.5) upon approaching the critical point, 
while X reduces to the normal thermal conductivity X far away from the critical 
point. 

Equation (3.11) relates the critical thermal conductivity enhancement Ax 
to the thermodynamic properties, the viscosity n and the correlation length 5. 
Using the thermodynamic relationship between the specific heat at constant 
pressure and constant volume 

P 

( J 

2 
P(Cp - Cv) = f" x* E 

c pk2 * a** 
, 

P* 
(3.14) 

and the relationship (2.20) between the correlation length and the symmetrized 
compressibility X$, we may rewrite (3.11) as 

Ax = & kgPC T* 
-(F,' (g)i* XG(y-v)'y F(AT*,Ap*) , (3.15) E. 6~rn 

with 

3 
-0 

= Solrv’y . (3.16) 

Since the critical viscosity enhancement is much weaker than the critical thermal 
conductivity enhancement, we may approximate the viscosity n in (3.11) and (3.15) 
by the normal viscosity t. This approximation is adequate within the accuracy 
with which the thermal conductivity near the critical point is known experi- 
mentally. 
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The function F in (3.11) and (3.15) is an empirical crossover function and 
the parameters AA and Bx, as well as the exponent n, in (3.13) are to be 
determined from the experimental thermal conductivity data. As a first approx- 
imation, these parameters were treated by Hanley et al. (1974b, 1976) as con- 
stants independent of the nature of the fluid. This assumption is strictly 
only valid for noble gases, where the thermal conductivity can be expected to 
satisfy corresponding states. In practice, these parameters, as well as the 
optimal form of the crossover function, may vary somewhat from fluid to fluid. 

The calculation of the thermal conductivity enhancement from (3.15) requires 
knowledge of the symmetrized isothermal compressibility X; and of the pressure 
coefficient ( aP*IaT*)p. Since the compressibility is strongly divergent, it is 
imperative that x$ be calculated from an appropriate scaled equation. For a 
large number of fluids the compressibility X$ can be calculated from the para- 
meters quoted in Table IV. However, in order to calculate (aP*/aT*)p an 
equation for n*(o*,T*) is insufficient and a more complete equation of state is 
required. A more complete equation of state based on the scaling laws is 
currently available for few substances only, namely for steam (Levelt Sengers, 
1977b) and for carbon dioxide (Basu and Sengers, 1980) as discussed in Section 
2.5, and also for isobutane (Waxman et al., 1978). However, 
remains finite at the critical point, 

since (aP*/aT*) p 
already a substantial improvement is 

obtained when x$ is calculated from the parameters presented in this report, 
even while (aP*/aT*) 

P 
is calculated from a conventional equation of state 

(Hanley et al., 1976 . 

3.2.2 Thermal conductivity of carbon dioxide 

In order to test the applicability of the proposed thermal conductivity 
equation, we consider a few representative examples where adequate experimental 
information is available. In particular for carbon dioxide, the thermal con- 
ductivity has been determined over a wide range of temperatures and densities 
around the critical point. The thermal conductivity in the critical region up 
to 750C was measured by one of the authors in collaboration with Michels and 
van der Gulik using a parallel plate method (Michels et al., 1962). The 
temperature range was subsequently extended by Le Neindre et al. (1973) up to 
700°C using a concentric cylinder method. The thermal diffusivity in the 
critical region of CO2 was measured accurately by Becker and Grigull (1978) 
from a holographic interferometric analysis of the transient temperature field 
in the gas under a heated horizontal plate. 

The data of Le Neindre et al. (1973) 
conductivity 1 as 

enable us to present the normal thermal 

3 
x = X0(T) + c xi Pi , 

i=l 

with 
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(3.18) 
-l/2 3 lo(?) = T C ai/Tk . 

k=o 

Here T and i are dimensionless variables defined as 

7 = T/T, , b = PIP r ' (3.19) 

with respect to a reference temperature T, and a reference density or. In 
the case of CO2 we adopt, for convenience only, the reference values 

Tr = 100 K , or = 100 kg/m3 . (3.20) 

x The coefficients ak in (3.18) were determined by Watson (1976b) and are 
reproduced in Table VIA. The coefficients Xi in (3.17) were presented in an 
earlier technical report (Sengers, 1972) and are reproduced in Table VIB. 

Table VI. Coefficients in the equation for the normal thermal conductivity 
1 of co, 

L 

VIA The coefficients ax 

x 
a2 

= + 618.115 m.K/W 

x 
a3 = - 613.848 m.K/W 

VIB The coefficients A 
i 

Al = 0.33789 x 10 -2 T.J . ,-lK-l 

X = 2 0.27725 x 10 
-3 -1 -1 

Wm K 

X = 
3 

0.47396 x 10 -4 W mwlKvl 

Using the parameter values 

n=O, A = 1.02 , AX = 39.8 , BX = 5.45 , (3.21) 
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- 

we present in Fig. 7 a comparison of the proposed thermal conductivity 
equation with the thermal conductivity data of Michels et al. (1962) and 
those reported by Becker and Grigull (1978). For this purpose we adopted 
the values n= 0 and A=1.02, while AA and BX were treated as adjustable 
parameters (Basu and Sengers, 1980). The thermodynamic properties in a 
region bounded by IAT*~ '0.03 and [LIP*] 50.28, and also the constant w 
were calculated using the parameter values given in Table V. Outside -0’ 

this region, we used tabulated thermodynamic property data values based on 
the experimental data of Michels and coworkers (Michels and Michels, 1935, 
1937; Michels et al., 1937; Michels and de Groot, 1948; Michels and Strijland, 
1952). The viscosity was calculated from an equation formulated by Watson 
(1976a). 

- Michels. Sengers. 
. Van der Gulik 

. 
a Becker 

L 
OO 

I I I I I I 
200 400 600 600 1000 

DENSITY, kg/m’ 

Fig. 7 Thermal conductivity data for carbon dioxide in the critical region 
along isotherms as a function of density. The curves indicate the 
values calculated from the representative equation proposed in this 
report. 
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It is noted that the property.determined experimentally by Becker and 
Grigull (1978) is the thermal diffusivity and not the thermal conductivity. 
Hence, a comparison between the two data sets is affected by the accuracy.- 
with which the specific heat cp close to the critical point can be calculated. ' 
The thermal conductivity data, reported by Becker and Grigull and reproduced 
in Fig. 7, were deduced from the experimental thermal diffusivity data, when 
the specific heat was calculated from the fundamental equation presented in 
Section 2.5 with T, =304.127 K as determined by Moldover (1974). However, 
the actual value of T, observed by Becker and Grigull in their experiment was 
304.144 K. If the latter value of T, is used, the thermal conductivities 
deduced from the thermal diffusivity data become slightly larger close to the 
critical point, leading to an almost perfect agreement with the data of 
Michels et al. (1962) at temperatures down to 305.21 K, but yielding a somewhat 
larger peak at 304.32 K. In view of the fact that the peak heights at 304.32 K 
and 305.21 K are sensitive to the value adopted for T,, we conclude from Fig. 7 
that our equation yields a reasonable representation of the thermal conductivity 
in the critical region. 

3.2.3 Thermal conductivity of steam 

The existence of a critical enhancement in the thermal conductivity 
of steam was demonstrated experimentally by Le Neindre et al. (1973) with a 
concentric cylinder apparatus and by Sirota, Latunin and Belyaeva (1973) with 
a parallel plate apparatus. Subsequently, Sirota et al. (1974, 1976) have 
published a large amount of data for the thermal conductivity of steam in the 
critical region. 

In order to represent the experimental thermal conductivity data in the 
critical region by the equations proposed in Section 3.2.1, we need again an 
equation for the normal thermal conductivity X= A,(T)+A,(p,T). In the case of 
carbon dioxide discussed in the previous section, this task was considerably 
simplified by the observation that the excess thermal conductivity X,(p,T) is 
independent of the temperature T in a large range of temperatures outside the 
critical region (Le Neindre et al., 1973). However, the assumption that the 
excess thermal conductivity X,(p,T) is independent of the temperature over a 
large range of temperatures, is not justified in the case of steam. For this 
reason we do not want to use equation (3.17) with values for the coefficients 
hi deduced from thermal conductivity data far away from the critical temperature. 
In our first approach, we retained equation (3.17) but determined the coefficients 

'i simultaneously with the parameters in the equation (3.15) for Ax from the 
experimental data in the critical region. This procedure yields a satisfactory 
representation of the experimental thermal conductivity data of steam in the 
critical region (Basu and Sengers, 1977). However, the equation thus obtained 
cannot be readily extrapolated to represent the thermal conductivity of water 
and steam over a large range of temperatures and densities. 

In order to accomplish the latter purpose, we adopted for x an equation of 
the form 

4 
PC 

i=O 
; b;l-.(A -l)Q- l>jl , 

j=O " T 
(3. #22) 
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with 

(3.23) 

Here ? and p are again dimensionless variables defined as (cf. (3.19)) l 

T = T/Tr , P = PIP r ' (3.24) 

For steam we took the reference values 

*r = 647.27 K , p r = 317.763 kg/m3 . (3.25) 

The choice of this equation for 1 was motivated by the observation that an 
equation of the same form yields an accurate representation of the viscosity 
of water and steam in a large range of temperatures and densities outside the 
critical region (Hendricks et al., 1977; Nagashima, 1977; Watson et al., 1980a,b). 
The reference values, defined in (3.25), are those currently used in the 
international formulations adopted by the International Association for the 
Properties of Steam (Nagashima, 1977; Schmidt, 1979; Meyer et al., 1980). These 
reference values are close to, but not equal to, the critical temperature and 
density of steam (Balfour et al., 1980). The parameters ai in equation (3.23) 
for X0 were earlier determined by Aleksandrov and Matveev (1976); they are 
reproduced in Table VIIA. A comparison of the equation for x0 with the 
experimental thermal conductivity data of water vapor and steam at low densities 
was presented in a previous technical report (Sengers and Basu, 1977). The 
coefficients bij in equation (3.22) were determined by Watson (1978) in 
collaboration with the present authors; they are listed in Table VIB. Details 
of how these coefficients were obtained, as well as a comprehensive comparison 
of the equation with all available experimental data is presented elsewhere 
(Sengers et al., 1980). 

To represent the thermal conductivity of steam in the critical region, we 
combine (3.22) with (3.13) and (3.15) using the parameter values 

n = l/2 , A = 1.20 , AX = 18.66 , BX = 1.00 , (3.26) 

as adopted in an earlier analysis (Basu and Sengers, 1977) and using the critical 
region parameters presented in Section 2.5. The parameters for the fundamental 
equation for the thermodynamic properties of steam in the critical region, listed 
in Table V, enable us to calculate these properties in a region'bounded by 
IAT*]=o.o~ and IAp*[zO.25. Outside this region we used the 1968 IFC Formulation 
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Table VII Coefficients in the equation for the 

normal thermal conductivity 1 of steam 

VIIA The coefficients ai 

A 
a = +2.022 23 m.K/W 

0 

x 
al = +14.111 66 m.K/W 

x 
a2 = +5.255 97 m.K/W 

x 
_ a3 = -2.018 70 m.K/W 

VIIB The coefficients bx ij 

4 
0 1 2 3 4 

i 0 +1.329 304 6. +1.701 836 3 +5.224 615 8 +8.712 767 5 -1.852 5999 
1 -0.404 524 37 -2.215 684 5 -10.124 111 -9.500 061 1 +0.934 046 90' 
2 +0.244 094 90 +1.651 105 7 +4.987 468 7 +4.378 660 6 0.. 0 
3 +0.018 660 751 -0.767 360 02 -0.272 976 94 -0.917 837 82 0.0 
4 -0.129 610 68 +0.372 833 44 -0.430 833 93 0.0 0.0 
5 +0.044 809 953 -0.112 031 60 +0.133 338 49 0.0 0.0 
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for Scientific and General use (IFC, 1968; Rivkin et al., 1978). The viscosity 
was calculated from the international formulation adopted by the International 
Association for the Properties of Steam (Hendricks et al., 1977; Nagashima, 
1977). The experimental thermal conductivity data were originally obtained by 
Sirota et al. (1974, 1976) as a function of pressure. The densities were then 
calculated from the experimental pressures and temperatures with the use of the 
equation of state data. However, the maxima in the thermal conductivity isobars 
as a function of density as reported by Sirota et al. do not seem to approach 
the critical density as observed for other fluids such as C02. The analysis 
does depend on the value adopted for T, which was not determined in the experi- 
ments of Sirota et al. We, therefore, recalculated the densities, treating T, 
as an adjustable parameter and selecting T,= 646.923 K as discussed elsewhere 
(Basu and Sengers, 1977). A comparison of our representative equation with the 
experimental thermal conductivity data at the recalculated densities is shown 
in Fig. 8. 

0 I I : I I 100 200 300 400 500 600 

DENSITY, kg/m’ 

Fig. 8 Thermal conductivity data for steam in the critical region at four 
different isobars, measured by Sirota et al. (1974, 1976). The 
curves indicate the values calculated from the representative equation 
proposed in this report. 

31 



The equation for the thermal conductivity of steam presented here was 
adopted by the International Association for the Properties of Steam as the 
recommended interpolating equation for scientific use (Kestin, 1978, 1980; 
Scheffler et al., 1979; Schmidt, 1979; Meyer et al., 1980). Further details 
will be presented in a forthcoming publication (Sengers et al., 1980). 

3.3 Viscosity 

3.3.1 Viscosity equation 

The asymptotic power law (3.9) for the critical viscosity enhancement 
is expected to become valid at temperatures and densities sufficiently close to 
the critical point such that qc>>l. In order to describe the critical 
viscosity enhancement more completely, one should, in principle, include 
deviations from this asymptotic behavior (Oxtoby and Gelbart, 1974). However, 
since the critical viscosity enhancement is weak and limited to a small range 
of temperatures anyway, we take here a practical approach by adopting (3.9) 
for all values qc>l, but treating q and C$ as adjustable parameters to be 
deduced from the experimental data. Furthermore, to connect the behavior of 
the viscosity close to the critical point with that of the normal viscosity away 
from the critical point, we neglect the critical viscosity enhancement for 
4551. Thus we adopt 

rl = r7(qd for Sk'1 3 
(3.27) 

17=;i for qs51 . 

Using (2.20) we can also write this viscosity equation in the form 

(3.28) 

with 

3.3.2 Viscosity of nitrogen 

To test the applicability of the proposed viscosity equation we 
consider a few selected fluids for which adequate experimental information is 
available. 
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Zozulya and Blagoi (1974) have reported experimental data for the viscosity 
of nitrogen near the critical point. The viscosity was measured as a function 
of density directly; the usual additional uncertainties associated with the 
conversion of experimental pressures into densities are thus avoided. Zozulya 
and Blagoi determined the viscosity as a function of density along 14 isotherms 
covering the range 126.16 K~T~135.00 K. The critical temperature was estimated 
as T,= (126.21f 0.01) K. A critical viscosity enhancement was observed in a 
temperature range of about 3 K above the critical temperature at densities between 
250 Kg/m3 and 375 kg/m3 (pc= 313.9 kg/m3). Some of the experimental data are 
shown in Fig. 9. 

To represent the viscosity in the critical region we need to combine the 
equation proposed for the viscosity ratio n/y with an equation for the normal 
viscosity 17. For this purpose we adopted a representative equation proposed by 
Hanley et al. (1974a); using this equation we converted the experimental viscosity 
data into viscosity ratios n/y. 

The viscosity ratios n/t are plotted in Fig. 10 as a function of the 
correlation length 5 evaluated by the method described in Section 2.6. We note 
that on a double logarithmic scale the data approach a straight line for q<>l. 
The slope of this line yields the exponent $ and the intercept with the c-axis 
the constant q-l. We thus obtain (Basu and Sengers, 1979) 

250 - 

“Q l 126.21 K 

x A 126.26K 
c 

q 126.40K 

P 127.00K 
x 135.00K 

I 
250 

1 I I 
300 ‘PC 350 

DENSITY, kg /m3 

Fig. 9 Viscosity data for nitrogen in the critical region as measured by 
Zozulya and Blagoi (1974).. The curves indicate the values calculated 
from the proposed viscosity equation with T ~126.201 K. 

C 
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0 126.40K 
0 l26.60K - 

0 0 
x v 127.00K 
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Fig. 10 Log-log plot of the viscosity ratio n/t as a function of the 
correlation length 5 for nitrogen in the critical region. 

-1 -10 
q = 22 X 10 m, 4 = 0.057 (Tc=126.201 K) , (3.30) 

so that, with the parameters in Table IV, I 

x* = 10.1 , 
0 

v$/y = 0.0303 . (3.31) 

The viscosities, calculated from (3.30) with the parameter values (3.31), are 
represented by the curves in Fig. 9. For further details the reader is 
referred to a separate publication (Basu and Sengers, 1979). 

3.3.3 Viscosity of steam 

The viscosity of steam in the critical region was investigated 
experimentally by Rivkin et al. (1975). They determined the kinematic 
viscosity n/p as a function of temperature and pressure. We converted the 
experimental pressures into values for the density p using the equations 
presented in Section 2.5 and assuming in the analysis T, = 647.073 K as discussed 
elsewhere (Basu et al., 1980b; Watson et al., 1980b). The values thus deduced 
for the dynamic viscosity as a function of p are shown in Fig. 11. 
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200 250 300 -- 400 450 

Density, kg/m3 

Fig. 11 Viscosity data for steam in the critical region (Rivkin et al. 1975; 
Watson et al., 1980). The curves indicate the values calculated 
from the proposed viscosity equation with Tc= 647.033 K. 

To represent the normal viscosity t we adopted an equation analogous to 
the equation presented in Section 3.2.3 for the normal thermal conductivity 
X of steam 

with 

5 6 
fj = qo(T) exp P C C bn (l-l)i(;- l)j 

i=O j=O ij T , (3.32) 

(3.33) 

and where T and p are the dimensionless variables earlier defined in (3.24). 
This equation has the same form as the viscosity equation adopted by the 
International Association for the Properties of Steam (Aleksandrov, 1977; 
Hendricks et al., 1977; Nagashima, 1977; Scheffler et al., 1978; Schmidt, 1979; 
Meyer et al., 1980). For the coefficients a$ in (3.32) we retained the values 
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earlier determined by Aleksandrov et al. (1975) and incorporated in the current 
international viscosity equation; they are reproduced in Table VIIIA. However, 
we found that the number of nonvanishing coefficients bg. could be reduced 
significantly as compared to the number of terms retaine %I in the international 
viscosity equation. The coefficients b?. were redetermined in collaboration 
with Watson and they are listed in TabliJVIIIB rWatson et al., 1980a,b). 

Table VIII Coefficients in the equation for the 

normal viscosity fi of steam 

VIIIA The coefficients a' 
k 

an = +0.018 1583~10~ Pa -1 
0 S-l 

a' = +0.017 7624~10~ Pa -1 
1 5-l 

a; = +O.OlO 5287 X106 Pa -1 
S-l 

a: = -0.003 6744X106 Pa-' s-l 

VIIIB The coefficients byj 

0 1 2 3 4 5 

0 +0.513 2047 +0.320 5656 0.0 0.0 -0.778 2567 +0.188 5447 

1 +0.215 1778 +0.731 7883 +1.241 044 +1.476 783 0.0 0.0 

2 -0.281 8107 -1.070 786 -1.263 184 0.0 0.0 0.0 

3 +0.177 8064 +0.460 5040 +0.234 0379 -0.492 4179 0.0 0.0 

4 -0.041 7661 0.0 0.0 +0.160 0435 0.0 0.0 

5 0.0 -0.015 7839 0.0 0.0 0.0 0.0 

6 0.0 0.0 0.0 -0.003 6295 0.0 0.0 

36 



A plot of the viscosity ratios TI/:, thus deduced from the experimental 
data, as a function of the correlation length 5 is shown in Fig. 12. 

.374.2 'C 
0.10 - A374.5 SC 

0375.0 DC 
0375.5 .C 

0.00 - 0376.0 *c 
x377.0 -c 
022.10 MPa 

- F 0.06 +22.20 MPO 
S22.30 MPa 

P 

Fig. 12 Log-log plot of the viscosity ratio n/c as a function of the 
correlation length 5 for steam in the critical region. 

The line corresponds to the parameters (Basu et al, 1980b) 

-1 
q = 26.6 X 10S1'm, 4 = 0.05 (Tc= 647.073 K) , (3.34) 

which, when combined with the parameters presented in Table V, implies 

x; = 21.4 v$ly = 0.0263 . (3.35) 

The viscosities, calculated from (3.28) with the parameter values (3.35) are 
represented by the curves in Fig. 11. A comprehensive comparison of this 
viscosity equation with experimental viscosity data of water and steam over 
a large range of temperatures and densities is presented elsewhere (Watson 
et al., 1980b). 
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4. Discussion 

4.1 Recommendations for calculating the thermal conductivity in the 
critical region. 

In this report an attempt was made to formulate representative 
equations that describe the singular behavior of the transport properties in 
terms of the singular behavior of the thermodynamic properties. 

The thermal conductivity exhibits a critical enhancement in a large range 
of temperatures and densities around the critical point. In order to estimate 
this enhancement the thermal conductivity X was separated into a normal 
contribution x and a critical enhancement Ax 

X=r;+Ah . (4.1) 

To estimate the critical enhancement we introduced an equation of the form 
(see (3.15)) 

This equation relates the thermal conductivity enhancement at a given temperature 
and density to the pressure coefficient (aP/aT>,, the symmetrized compressibility 
XT and the (normal) shear viscosity 17. 

A calculation of the thermal conductivity enhancement Ah as a function of 
temperature and pressure involves the following steps. 

a> Calculate the density at the given temperature and pressure from 
the equation of state. 

b) Caiculate ( aP/aTjp and XT at the given temperature and density from 
the equation of state. 

c> Calculate the (normal) viscosity D at the given temperature and density. 
In this procedure the critical viscosity enhancement may be neglected 
and most available engineering equations for the viscosity n will be 
adequate for the purpose. 

In this report we formulated a detailed procedure for calculating AX of 
carbon dioxide and steam in the critical region. This procedure uses available 
scaled equations of state for these substances in the critical region. 

A recommended procedure yielding estimates for the thermal conductivity 
of other fluids is presented in Table IX. We emphasize that this procedure is 
an approximate method for predicting the thermal conductivity enhancement. In 
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particular, the constants A and B in (4.2) will depend somewhat on the choice 
of the fluid. In the absen$e of fhrther information we recommend that the 
values of these constants adopted for CO2 be used for the other fluids as well. 
The recommended procedure was used by Hanley et al. (1974, 1975, 1977) to 
estimate the thermal conductivity enhancement for a number of fluids. 

Table IX. Procedure for estimating the critical thermal conductivity 
enhancement at given temperature and pressure 

1. 

2. 

3. 

4. 

5. 

Calculate p* and (aP*/aT*)p from best available equation of state. 

If p* and T* are outside the region bounded by (2.17), calculate $ 

from best available equation of state. 

If p* and T* are inside the region bounded by (2.17), calculate XG 

from (2.11) with parameter values from Table IV. 

Calculate Eo= co/r v/L 5 
0 

(a,k)vlY with parameter values from Table IV. 

Calculate the viscosity n from the best available equation for the 

normal viscosity, neglecting any critical viscosity enhancement 

effects. 

Calculate A?, from (4.2) with the values n=O, A=l.02, AX=39.8, 

BX= 5.45 earlier adopted for CO2 (see (3.21)). 

Because of the divergent nature of the thermal conductivity at the critical 
point, the calculated thermal conductivities in the near-critical region are 
sensitive to the choice for the critical temperature and pressure. Roughly 
speaking, if the critical temperature is uncertain by a relative amount BTz, 
then the calculated values become inaccurate in a range bounded approximately by 

lA~*j 5 /106~;[, ]Ap*l i j106T$3 . (4.3) 

Since at the critical point (aP*/aT*), = 6, a relative error 6P* in the 
critical pressure has about the same effect as l/6 times the same relative error 
6T* in the critical temperature. 

C 
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4.2 Recommendations for calculating the viscosity in the critical region 

The critical viscosity enhancement is weak and can only be observed at 
temperatures within a few percent from the critical temperatures. Hence, the 
effect may be neglected in most engineering applications as was done in the 
international representation recently adopted for the viscosity of steam 
(Aleksandrov, 1977; Hendricks et al, 1977, Nagashima, 1977; Scheffler et al, 
1978; Schmidt, 1979; Meyer et al., 1980). In this report we showed how the 
critical viscosity enhancement can be accounted for in the case of nitrogen 
and steam. For other fluids it only makes sense if the density p and the 
normal viscosity 6 in the critical region are known with considerable accuracy. 

An estimate of the critical viscosity enhancement can be obtained from 
(3.27) 

Rn(rl/r?> = $Rn(qS)O(qS-1) , (4.4) 

where O(z) is the Heaviside step function such that O(z)= 1 for z > 0 and 
O(z)=0 for ~50. The correlation length 5 can be calculated from (2.20). In 
the absence of more detailed information, we recommend $=0.05, while q may be 
estimated from an approximate equation (Basu and Sengers, 1979) 

kBp 2r c aw 
Pm--- 

( ) aT* , 
c c P< 

(4.5) 

where t and x are the normal viscosity and normal thermal conductivity at the 
critical poinE. Using the rule of thumb (aP*/aT*) = 6, we approximate (4.5) 
by P 

9kBPJ 9kBPck 
- . (4.6) 

The procedure is summarized in Table X. 
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Table X. Procedure for estimating the critical viscosity enhance- 
ment at given temperature and density 

1. Calculate 11 from best available equation for the normal viscosity. 

2. If p* and T* are outside the region bounded by (2.17), take n= t 

and stop. 

If p* and T* are inside the regions bounded by (2.17), continue. 

3. Calculate <= c,(xt/r) VI-Y = Eo($a/k)v'Y from (2.11) with parameter 

values from Table IV. 

4. Calculate xc and tc from best available equations for the normal 

thermal conductivity and viscosity. 

5. Calculate q from (4.6). 

6. Calculate n= ~(q~)oSo5 wherever qS> 1. 
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4.3 Outlook 

In this report we have presented simple approximate equations for the 
compressibility, the thermal conductivity and the viscosity of fluids in the 
critical regions. There are a number of ways available by which the quality 
of the representative equations can be improved. 

First, it is possible to formulate a revised and extended scaled equation 
of state with a priori known theoretical values of the critical exponents and 
valid in a larger range than the scaled equation of state considered in this 
report (Balfour et al, 1977, 1978). Parameter values for such a revised and 
extended scaled equation of state have been determined in the case of steam 
(Balfour et al. 1980) and in the case of ethylene (Hastings et al., 1980) and 
parameter values in the case of other fluids are expected to become available 
in the future. 

For a completely satisfactory description one would like to formulate a 
global equation of state that smoothly connects the scaling laws in the 
critical region with the known analytic surface valid away from the critical 
region. This problem requires further study as discussed elsewhere (Levelt 
Sengers and Sengers, 1980). 

In order to connect the critical enhancement in the transport properties 
with the normal behavior of the transport properties we introduced an 
empirical crossover function (3.13) for the thermal conductivity and a 
Heaviside step function (see (4.4)) for the viscosity. It is possible to 
introduce better crossover functions from a more detailed examination of 
the mode-coupling equation for the critical enhancement of the thermal 
conductivity and the viscosity. This work is currently in progress.+ 

t This work is done in collaboration with Bhattacharjee and Ferrell. 
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Appendix 

Computer program for calculating the linear model parameters r and 0 

I- 
i: 
C 
c 
C 
c 
c 
c 
c. 
c 
c 
C: 
c 
c 
C 
I- 
c 
c 
I- < 
c 
c 
r 
C 
c. 
C 
C 
C 
C 
c 
c. 
C 
C 
C 
C 
C 

C 

E 

C 

C 
C 
C 

EVRLI:RTE LIr:ERP KCCEL FRFvWETERS R RNC TKETR 
FRCP: GIVEN TEP:FEFHTI;RES F;I-!G CENSITY 

CALL CFPR~~CRS,CTS,~;CCE,XCS,B~S~BET~S~R,TK~) 

1:ESCFIFTICN CF FRF’Rf<ETERS 
CR3 = RKC.‘RKCT-l=F’EI:I.:CEC CENSITY-1 
CTS = T/TC-l=PECCCEC TEP:FERRTL!PES-1 
RS, THS - LIKERP ISCCEL PRRRPfETERS RI TKETR 
EETHS - CR1 TICRL EXFCPIENT 
XCS. B2S - FIXED FRFRtiETERS IN LINEHH P:CCEL 
KCCE - HN 1F:CIC:RTCR 

= 1 IF CRTH FEINT IS INSICE CXC 
= 2 IF NEUTCNS RETKCC CFilWiCT FINC THETA 
= 3 IF FHRH~ETERS I) RNC TKETA WE SlJCCESTFL:LLY EVRLl%TEC 
= 4 IF TKETR URS FCLZNG Bl:T R FRILS CCNSISTEWY TEST 
= =, IF TKETR IdAS FCC:NC BUT R BECCNES NEGRTIVE 

CCM?ENTS 
THE FRCWRr: USES CCIJBLE FE’ECISICN RRITHNETIC 
CFS.CT~.BETRSIXC~.B~S SKCICLC BE FRCVICEC BY THE CRLLIM RCl:TIKE 
THE VRLCE CF R RNC TKETR IS RETURNEE TC THE CRLLING RCUTINE 

THE 1NFl:T FHRRKHTERS 2 a WCULG BE IN SINGLE FRECISICN 
THE FRC6RfilS CCNVERTS TKEP: TC CCICBLE FFECISICN ANG USES 
I:Cl:BLE FRECISICN RRITHnETIC . RETURNS RITKETR IN DOUBLE 

FRECISICN 

SI;BRCI~TINES RNG SI.!BFRCGRR~:S REGUIREC 
NCNE 

SCRRCC!TINE GFRR~(CRS,CTSI~CCEIXC~~~~SIBETAS,R,TH, 
IKFLICIT RERL*S(R-H,C-2) 
RERL CRS,CTS,.XCS,BETRS,B2S 
I=1 

IPZRX = ICC GIVES THE WXIW:R Nl:KBER CF ITERRTICNS GCrlE 
ERWIX SETS TKE CRITERIH FCR CCNVERGENCE 

IrmX=l cc 
CR = CRS 
CT = GTS 
xc = xcs 
BETA = BETAS 
B2 - B2S 
ERNAX=l.E-13 
B=SGRT (B2) 
SGN=l . 
IF(CR.LT.C., S’GN=-1. 
IFGP.EE.C., GC TC 2CC 
IFrCT.EI=. C. > GC TC 1 CC 
X=CT/ABS (CR> . . cl. /BETR> 
RX=RBS (X1 
IF c’X.LT. (-XC> * *rSC TC 4CC 
IF (CT.GT.C.1 CC TC C,C 

NEIJTCNS KETKCC CF SCLUTICN FCR VRRICUS VRLUES CF CR RNC CT 

TKETR=(l.+l./B)/2. 
25 FX=RX* r’B2- 1. > +THETR** (1. ./BETA> /XC+ I. -B2*THETReeP 

FXF=RX* cB2- 1. > l TKETFL** f 1. ‘BETR-l.>/tXC*BETR,-2.*B2*TKETR 
TKETR=TKETR-FXfFXF 
IF (RBS <FX,‘<FXF*TKETR.J) .LT.ER#RX, GC TC 3CC 
IF(I.GT.IxRX) 6C TC ‘,CC 
I=T+ 1 
GC TC 25 
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5c 
5’; 

ICC 

2CC 

3CC 

3TC 

FGCl 

THETR =¶. / (2. l B, 
FX=RX~(B2-1.)*TKETR**~l./BET~~~XC-l.tB2.THET~*~2 
FXP=RX* <B2-l.)rTHETR~~<l./BETR-l.)/(:~:C*BETR~~2.cB2~THETR 
THETR=THETR-FX/FXP 
IF <HBS <FX/ (FXPeTHETR) 1 .LT.ERl?RX) GE TC 3CC 
I=I+l 
IF<I.GT.IKRX) CC TC 5CC 
GE TC ‘55 
THETR=l . /B*SGti 
TH=THETR 
ISCCE=3 
R= (GR/THETR’> l * < 1. /BETR> *XC/ <Be- 1. ) 
RETCRti 
THETP,=C. 
TH=THETA 
RCCE=B 
R=CT 
IF<CT.LT.C.> GC TC 4CC 
RETURN 
THETA=THETR*SGH 
TH=THETA 
GCI:BW=GT’ < 1. -B2*THETR**2, 
R=DCL’BR 
IF(GCUBW.LT. C.) SC TC 6CC 
CRC:RLC= (CCC!ERe (B2- 1.1 /XC> l *BETR*THETR 
IF (RBS (1 .-CRCtUC/CR~.GT.l.E-lC, CC TC 35C 
rxCE=3 
RETURN 
r?CCE=4 
~~RITE(~,~CC~)CRCALCICR,CTIR~TH,XCIBETA,B~~I~~CBE 
ERWiX=ERtWX/lCCCC 

FCRf’ZRT(‘CPKA~TER IN TRCUBLE- MY REWIRE KILLING RUF;‘r.jr 
14C24.18~ /4C24.18r.‘r218, 

THETR=HBS (THETR) 
I=1 
IF<CT.GT.C.) GC TC 55 
SC TC 25 

4GT: RCCE-1 
TH=SGN 
CCUBR=CT/ (1. -82) 
R=CCC!BR 
RETURN 

5;Cc IxxE=2 
5’,C l~RITE(~.SCC2?CRrCT,R1TH,XC~BETR~B2~I~~C~E 

9CC2 FCRART(‘CPRfWTR FRILlJRE’r/r?E14.8v/r218) 
RETURN 

6CC MxE=S 
GC TC 95C 
ENG 
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